2022-2023全国100所名校冲刺卷数 答案

2022-2023全国100所名校冲刺卷数 答案,全国100所名校答案网已经编辑汇总了2022-2023全国100所名校冲刺卷数 答案的各科答案和试卷,更多全国100所名校答案请关注本网站。

11.解:(1)因为函数f(x)=lnx一m与y=ex在(,1)上都是增函数,所以函数g(x)=f(x)十ex=lnx+ex一m在(二,1)上也是增函数,因为函数g(x)在区间(日,1)内存在零点,n1+1-m<0,所以〈解得0 0,所以实数m的取值范围为(0,e).(10分)(2)关于x的方程f(e+1)=乏有实数根,等价于关于x的方程2m=2ln(e2+1)一x有实数根,所以存在实数x使2m=ln(e+1)2-lne=nD=n(e++2)成立.因为e+>2√e·石=2(当且仅当e=合,x=0时取等号),所以h(e+号+2)≥n(2+2√e·)-21a2,所以实数m的取值范围是[ln2,十c∞).(20分)

22.解:(1)结合频率分布直方图,得用分层随机抽样抽取8个口罩,其中二级,一级口罩的个数分别为6,2,所以X的可能取值为0,1,2.P(X=0)=g-音P(X-1)-e=5CC28P(X=2)=CiC28(2分)所以X的分布列为X01215P12828(3分)所以EX)=0是+1×+2×=是.4分)(2)①由题意,知Y的可能取值为0,1,2.Pv=0-1-a2]-陆3(n+2)pY=1)=2[1-a2]×m2=a22(n+2)’P(Y=2)=(n+2)F(6分)所以Y的分布列为Y012P(n2+4n+3)2221(n+2)(n+2)2(n+2)(n十2)(7分)所以E(Y)=0X(n2+4n+3)2(n十2)4+1×2(9分)Y012P(n2+4n+3)2221(n+2)(n+2)2(n+2)(n+2)(7分)所以E(Y)=0X(n2+4n+3)2+1×(n+2)9222(n+2)2(n+2)+2x (nn2n子2(9分)因为Z=nY,所以E(Z)=nE(Y)=2n(n+2)=24十4当且仅当n=2时取等号.(11分)所以E(Z)取最大值时,n的值为2.(12分)

关键词:实时资讯